CS395T: Foundations of
Machine Learning for

Systems Researchers
Fall 2025

Lecture 3: Neural Networks

Organization

e Nonlinear functions used in Neural Networks (NNs) Function R(P.Q) {
— Sigmoidal: R—>N A=WO*pP
B =/0(AQ)
— Softmax: R"—R" C=WI1*B
D=W2*B
e Examples of Multilayer Perceptrons (MLP) E =f1(C)
. . F=72(D)
— Implementing Boolean functions R = f3(E,F)
return R}
e Loss functions for probability distributions
— KL-divergence, cross-entropy Training data: {(pi,qi,ti)}

e Convolutional neural networks (CNN)

— Array/tensor — class label

— Image classification

Loss = mean square error
Find gradient of Loss
Perform gradient-
descent to find optimal
WOo,W1,W2

Neural networks get their power from nonlinearity

e Nonlinear base functions are critical to the power of neural networks o

— Composition of linear functions is linear!

e Example: classification* O\H
(]
[J

e Linear classifiers work for simple data sets such as top right one

— Data: points in plane with one of three labels (red, green, blue)

— Given a new point, predictits label

— Linear classifier divides plane into three regions and uses that to predict label
. PO
05 e, QQ%Q:D owiel ®
e Linear classifiers not adequate for more complex data sets such as LT o :
. '.o. 8‘32 2 La.'

bottom right one o ot v the %
— Nonlinearity is essential *i, . K3

S et &
— NNs can handle this problem s, o

-;'.

* From Fei Fei Li’s CS231n course notes Linit;oar clagsifiers“fail' ,\;st womrk

3

Sigmoidal functions, RelLU,...
Nonlinear funCtiOnS * |Intuition: binary classification

* Smooth versions of step function

used in
neural networks

Softmax

* |ntuition: multiway classification
* Smooth version of argmax

Sigmoidal functions: SR—R

Tout
o StSighuoickion —» 1
in out 05
e Step function _Ie -4 _.2 % ; 21 és
— Ifinputis +ve, outputis 1 else outputis O > L.
P P P 0 n Logistic
— Does not have derivative at 0 .
Ste function
P ' B 1
e Sigmoidal functions (S-shaped): function fz) = 1re@
— Smooth approximations to step functions df
— = f@)(1 - f(x))

— Examples: logistic function, tanh

e Disadvantages of logistic function:

— Vanishing gradients for large magnitude inputs, so weights upstream from activation function are updated slowly

— Computationally more expensive than alternatives like ReLU 5

Other

activation
functions

Hame

Binary step

Logistic (a.

Soft step)

TarH

ArcTan

Rectified
Linear Unit
(ReLU)

Parameteric
Rectified
Linear Unit
(PReLU) 12

Exponential
Linear Unit
(gLy) B3

SoftPlus

k.a

Plot

Equation

0 for
f(l)_{ 1 for
1
T4e=

flz)=
f(z) = tanh(z) =
f(z)= ta‘u_l(.r)

ﬂﬂ:{Obr

x for

x for

ﬂnz{m-m

<0
x>0

2

o =
l+e 2

<0
x>0

r<0
x>0

ﬂm:{ﬂﬁ—nﬂnf<u

f(l) T]Og((l -+ f‘f

xz for x>0

)

Derivative
v J 0 for 2#0
f (l)IA\z.) { ?2 for =0

for <0
for x>0

for x>0

f(z)+a for <0
1 for >0

fz)= { e

Softmax:; Rk— Rk

"I One-hot |7 Y1

o | POEMAX | o)

Xk— Encoder }— Y1

e One-hotarg max encoder

yiis 1ifx;is largest input, and zero otherwise
If m inputs are maximal, corresponding outputs are 1/m
Note: output values are non-negative and sumto 1

Outputs can be interpreted as probability distribution

e Smooth approximation to one-hot arg max encoder: softmax

Intuition: points on line x2 = x1+k are mapped to (1 ek)

eF+1" ek +1

Outputs can be interpreted as probability distribution

e 2-inputencoder with one input setto 0 is logistic function

>
>

10y,

2-input one-hot arg max encoder

el

y. J—

7 2521 exj
Oy

— (1 —

ox; v yi)
Oy — iy
axm 1 m

Softmax function:k inputs

MLP Examples

Example: encoding Boolean functions (l)

Step

— e

in function| out

e Implementation: ¥ = ©(Wzx + b)
— Inputs and outputs: 0 for false, 1 for true
— Network

— Constants b referred to as bias
e NOT: y=O(—1xz+0.5)
e AND: Q = @($1+$2—15)

e OR: ¥ =0O(x1+12—0.5)

A 5 . . .
out / Logistic function
1 e

0 In --~_ Bias: permits

Y affine functions
/)

Step)
function @ -0.5
1
1 1 <x2> —05 oR
I

(",
|nput : Output
layer ! layer

Single-layer perceptron

Example: encoding Boolean functions (ll)

® Implements
r1 D xo = (.%1/\33_2) V (l'_l/\l‘g)

e XOR requires a hidden layer

— Minsky & Papert

out
1

0 in
Step
function ®

Input
layer

Hidden
layer

Output
layer

10

https://en.wikipedia.org/wiki/Perceptrons_(book)
https://en.wikipedia.org/wiki/Perceptrons_(book)
https://en.wikipedia.org/wiki/Perceptrons_(book)

Power of multi-layer neural networks

Universal approximation theorem:

* network with a linear output layer, and
* atleast one hidden layer with any “squashing” activation function (such
as the logistic function)

can approximate any Borel measurable function from one finite-
dimensional space to another with any desired non-zero amount of error,
provided that the network is given enough hidden units.

Many similar results with different assumptions

Variations of this theorem go back to McCulloch & Pitts (1943)

Wikipedia has a good overview:
https://en.wikipedia.org/wiki/Universal approximation theorem

11

https://link.springer.com/article/10.1007/BF02478259
https://en.wikipedia.org/wiki/Universal_approximation_theorem

Loss Functions for

Probability Distributions

Example: image classification using NNs

v w q(w;V)
® Outgqt_
Input image I Logits (L) Softmax probabilicies Classes
3.2 & Y 0.775 Dog
NN :
? 13 iy e G 0116 | Cat
* Layers exp(y;
, y 0.2 ,; p(y;) 0.039 Horse
0.8 N 4 0.070 Cheetah
4 image classes: dog, cat, horse, cheetah
Training data: 1.0
* Images labeled with one-hot encoding of class: for dog, 0.0
* Interpret as probability distribution p(V) for classes 88

NN:

* Parameters w
* Output g(w;V) is probability distribution for classes

Logits: raw scores that are usually converted to probabilities by softmax

Loss function: measure of how “far away” p(V) and q(w;V) are from each other
* Loss across entire training set = mean of loss perimage

13

Some possibilities

Consider label p(v) and model output g(w;v) to be points in 4-D space and compute some
measure of “distance” between them

Ip(v)—q(w;v) |y [lp(v)=q(w;v)]|2

Drawback of these loss functions: slow convergence
* For classification, we do not care about values in prediction vector (q), only the predicted label (bin)
* L, normwas used for classification problems till the late 90’s

Modern approach: divergences
* D(p,q): distribution x distribution = real
* Class of functions that satisfy these properties

D(p,q) >0
D(p,q) =0 < p=gq

* Need not be a metric since it may not even be symmetric
* Many divergence functions in literature: L, and L, norms, Bregman divergence, f-divergence,...

14

Kullback-Leibler (KL) divergence: D, (P||Q)

Graph for log(x)
Two distributions -

1 3
)4 0.2 02 0.4 06 08 1 12 14 16
0.8 =
2
0.6
0.4 04
0.2
06
0 [| — -
1 2

M| abel mDNN

e Start with Z p(i) —q(i)

* Two key intuitions
* If p(i) is small for some i, we do not care that much about (p(i)-q(i)) Zp(l)(P(l) —q(1)

* Any monotonically increasing function f can be used to massage values of p and g
without changing the sign of the difference

» KL-divergence uses log (usually logs) _ _ _
* Intuition: penalize mistakes: large p(i), small (i) Z p()(log(p (1)) — log(q(1))) 15
i=1

Cross-entropy (l)

D (PI1 Q) = Zf=1p<i><log(p<z:>> — log(q(1)))

= zpmlog()+ melog()

l:

L=

= -H(P) + HPQ)

(P,Q) is called cross-entropy between P and Q (non-negative value)

H(P) is constant for given training set so we can use cross-entropy for loss
In practice, try to reduce cross-entropy to less than 0.25

16

Cross-entropy (ll)

a(w;V)

V w Output
Input image ® Logits (L) Softmax P rob?g)ililies Classes
3.2 , N 0.775 Dog
c _ 1 e 13 Gl f"P& 0.116 Cat
H(P,Q) = z p(i) log (q(_L)) @ || Lavers T JES & =rl) 0039 | Horse
=1 ‘ 0.8 A= 0.070 Cheetah

Gradient of cross-entropy loss assuming ground truth classis m
(p(m) =1, p(i) = 0 for all other classes)

JH(P, 1 0
H(PQ) =-logla(m)) ~ Zjr=- -+ 21

Jensen-Shannon divergence: square root is metric
Dis(PI1Q) = 2 Dy (P[IM) + 72 Dy, (Q[IM) where M =72 (P+Q)

17

Image classification problem

Stairs Stairs Not Stairs Not Stairs Not Stairs Not Stairs

Stairs Not Stairs Stairs Stairs Not Stairs Stairs

p1,p2,p3,p4:
gray scale values for
image

output

output

Output: 1i

where s is probability of ”stairs”

18

https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example

Convolutional Neural

Networks (CNNs)

Convolution (1D example)

N/ \
W4 W% wiy 00 \:VO /V}/{ 0 Wawg w4,

v

* Padding: input extended with zeros at boundaries, so output is same size

» Stride: gap between successive stencil applications
* Qutput smaller than input (down-sampling)

* Weights are learned during training rather than being set heuristically

* Relation to fully-connected layers:
* Sparse linear layer
e Strong prior: weights of distant points is set to zero before training
* Weight-sharing
« Same weights used to compute all output elements
20

Convolutions on images

CIFAR-10

* |nput data types are array/matrix/tensor
* Image is an NxN array of pixels 32

* Each pixel has grayscale value (0-
255) or RGB values (channels)

 Example: CIFAR-10 dataset has e dotoct o S
60K, 32x32 RGB images, each se detecton e \
labeled with one of 10 classes s/

* Convolution operation (aka filter)
» Stencil operation to extract features

* Multiple filters: multiple output arrays

21

https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73

https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73

Convolutional neural networks (CNNs)

Convolution layer

* Input data types are array/matrix/tensor / Convolution \

* Image is an NxN array or tensor
* Structure of convolution layer Activation

e Convolution: sparse linear layer w/ weight sharing l

* Activation functions (usually ReLU) Poolin

: . . : g

* Pooling: reduction operation on portions of array \ | /

* CNN:

Input

* Multiple convolutional layers
* Fully-connected layers
e Softmax

70 223 2x2 max pooling with a
stride of 1

2x2 max pooling with a
stride of 2

22

Example: VGGNet

* Inputimage: 224x224x3
* Conv: 3x3 convolutions/stride 1/padding 1, RelLU

* Pool: 2x2 max pooling/stride 2/no padding
Input w : Image input

M Conv : Convolutional layer
S M ling |
5 O 0O 0O . Dt
3 A g o 8 > - = Pool : Max-pooling layer
= < < & < =2 §
% FC : Fully-connected layer
8 H »H H H H b
< ~ < ~ ~ ~ ~ :
5 5 - 5 5 s 5 Softmax : Softmax layer
2N ®» B o o <N
VGGNet
w
. o .
S (S (5 (IS 1S (IS (IS IS (I8 |5 [k (IS | IS (I8 (B |18 | = |[=||m || Parameters: 138,344,128
c 3 =] o 3 - o 3 3 o - = o) 3 = o (@] (] (@] 3 .
- < < = | B = = | B < = | S < = | B < E & Memory: 200MB/image
| = e = E= | s | e
Q 1Y) 0 1Y) 1Y) o) o)
b ~ - s ~l e ~
]]] o o e <
For more details - ot bt o a & N 3

Kaggle notebook

http://ethereon.github.io/netscope/
http://ethereon.github.io/netscope/
https://www.kaggle.com/code/blurredmachine/vggnet-16-architecture-a-complete-guide/notebook

Variations (useful for other NNs as well)(l)

Drop-out: technique to avoid over-fitting w pw
, : Present with Al

https:/ﬂmlr.org/papers/volume1 S/srivastava pzzr;ﬂiv:; > przvszst

14a/srivastaval4a.pdf (a) At training time (b) At test time

o o Batch Norm
Mini-batch: Activations

Features Mean and Std Dev Scale and Shift
—_—

g 1
a 11'1 = — ZAZ e a Output
£ M BN; =y© A; + B[o
=
gi=4/L 3 (A — p)? Beta | [Gamma
vz

Batch normalization: like data
normalization but performed on the fly

ﬁovlng Average

during training on outputs of hidden layers Fomov, = Cthtmou; + (1 — @)
Omov; = QT mon; + (1 — @)0;

Informalintroduction to batch normalization 2

https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://towardsdatascience.com/batch-norm-explained-visually-why-does-it-work-90b98bcc58a0
https://towardsdatascience.com/batch-norm-explained-visually-why-does-it-work-90b98bcc58a0

Variations (useful for other NNs as well)(ll)

Residual (skip) connections

* Ameliorate problem of vanishing gradients
* First popularized in ResNet but used much earlier X

by McCulloch and Pitts, and Rosenblatt f(X)
* Permitted stacking of many more layers in CNNs

ResNet-18 v AAAAAAA,
‘ ==ResNet-34 34-layer

20 A : ; . 2 : i

| 10 20 30 40 50 l’() 10 20 30 40 50

iter. (led) iter. (led)

From ResNet paper 25

https://arxiv.org/pdf/1512.03385
https://towardsdatascience.com/batch-norm-explained-visually-why-does-it-work-90b98bcc58a0

Online resources

CIFAR-10 demo running in your browser
* From Andrej Karpathy

* Shows improvements in accuracy for CIFAR-10 dataset during
training

Fei-Fei Li’s CNN course notes
* Stanford course ¢s231
* Leading expert on CNNs and image classification

26

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/

Summary

Nonlinear functions used in NNs
— Sigmoid: R—>R
> Logistic function, RelLU, Leaky RelLU,....

— Softmax: R"—R"

> Output can be interpreted as a probability distribution

Examples of NNs
— Implementing Boolean functions

— Stairimage classifier

Loss functions for distributions

— KL-divergence, cross-entropy

Convolutional neural networks (CNNs)

— Inputs are matrices/tensors
27

3
{
Y
{
!

cgesere O

e

