CS395T: Foundations of Machine Learning for Systems Researchers Fall 2025

Organization

- Nonlinear functions used in Neural Networks (NNs)
 - Sigmoidal: $\Re \rightarrow \Re$
 - Softmax: $\Re^n \rightarrow \Re^n$
- Examples of Multilayer Perceptrons (MLP)
 - Implementing Boolean functions
- Loss functions for probability distributions
 - KL-divergence, cross-entropy
- Convolutional neural networks (CNN)
 - Array/tensor \rightarrow class label
 - Image classification

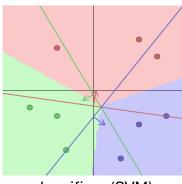
```
Function R(P,Q) {
A = W0*P
B = f0(A,Q)
C = W1*B
D = W2*B
E = f1(C)
F = f2(D)
R = f3(E,F)
return R
```

Training data: {(pi,qi,ti)}

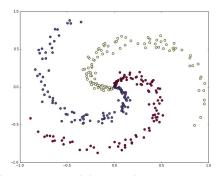
- Loss = mean square error
- Find gradient of Loss
- Perform gradientdescent to find optimal W0,W1,W2

Neural networks get their power from nonlinearity

- Nonlinear base functions are critical to the power of neural networks
 - Composition of linear functions is linear!
- Example: classification*
- Linear classifiers work for simple data sets such as top right one
 - Data: points in plane with one of three labels (red, green, blue)
 - Given a new point, predict its label
 - Linear classifier divides plane into three regions and uses that to predict label
- Linear classifiers not adequate for more complex data sets such as bottom right one
 - Nonlinearity is essential
 - NNs can handle this problem



Linear classifiers (SVM) work



Linear classifiers fail; NNs work

^{*} From Fei Fei Li's CS231n course notes

Nonlinear functions used in neural networks

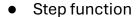
Sigmoidal functions, ReLU,...

- Intuition: binary classification
 - Smooth versions of step function

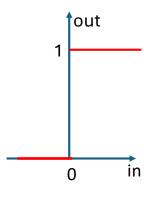
Softmax

- Intuition: multiway classification
 - Smooth version of argmax

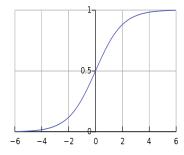
Sigmoidal functions: $\Re \rightarrow \Re$



- If input is +ve, output is 1 else output is 0
- Does not have derivative at 0
- Sigmoidal functions (S-shaped):
 - Smooth approximations to step functions
 - Examples: logistic function, tanh



Step function



Logistic function $f(x) = \frac{1}{1 + e^{-x}}$

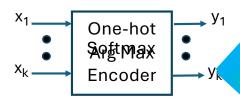
$$\frac{df}{dx} = f(x)(1 - f(x))$$

- Disadvantages of logistic function:
 - Vanishing gradients for large magnitude inputs, so weights upstream from activation function are updated slowly
 - Computationally more expensive than alternatives like ReLU

Other activation functions

Name	Plot	Equation	Derivative
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Softmax: $\Re^k \rightarrow \Re^k$



(0,1) (1,0) y₁

- One-hot arg max encoder
 - y_i is 1 if x_i is largest input, and zero otherwise
 - If m inputs are maximal, corresponding outputs are 1/m
 - Note: output values are non-negative and sum to 1
 - Outputs can be interpreted as probability distribution
- Smooth approximation to one-hot arg max encoder: softmax
 - Intuition: points on line x2 = x1+k are mapped to $(\frac{1}{e^k+1},\frac{e^k}{e^k+1})$
 - Outputs can be interpreted as probability distribution
- 2-input encoder with one input set to 0 is logistic function

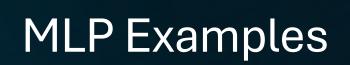
$$y_i = \frac{e^{x_i}}{\sum_{j=1}^k e^{x_j}}$$

2-input one-hot arg max encoder

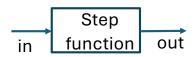
$$\frac{\partial y_i}{\partial x_i} = y_i (1 - y_i)$$

$$\frac{\partial y_i}{\partial x_m} = -y_i * y_m$$

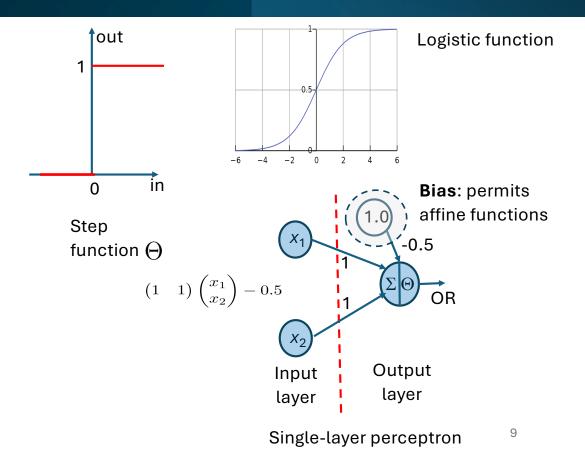
Softmax function:k inputs



Example: encoding Boolean functions (I)



- Implementation: $\hat{y} = \Theta(W\underline{x} + \underline{b})$
 - Inputs and outputs: 0 for false, 1 for true
 - Network
 - Constants b referred to as bias
- NOT: $\hat{y} = \Theta(-1*x+0.5)$
- AND: $\hat{y} = \Theta(x_1 + x_2 1.5)$
- OR: $\hat{y} = \Theta(x_1 + x_2 0.5)$



Example: encoding Boolean functions (II)

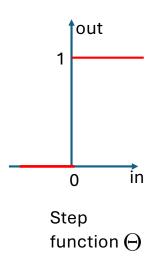
• XOR:

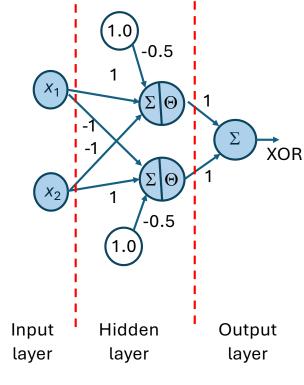
$$\hat{y} = \begin{pmatrix} 1 & 1 \end{pmatrix} \Theta \begin{pmatrix} x_1 - x_2 - 0.5 \\ -x_1 + x_2 - 0.5 \end{pmatrix}$$

• Implements

$$x_1 \oplus x_2 = (x_1 \wedge \bar{x_2}) \vee (\bar{x_1} \wedge x_2)$$

- XOR requires a hidden layer
 - Minsky & Papert





Power of multi-layer neural networks

Universal approximation theorem:

- network with a linear output layer, and
- at least one hidden layer with any "squashing" activation function (such as the logistic function)

can approximate any Borel measurable function from one finitedimensional space to another with any desired non-zero amount of error, provided that the network is given enough hidden units.

Many similar results with different assumptions

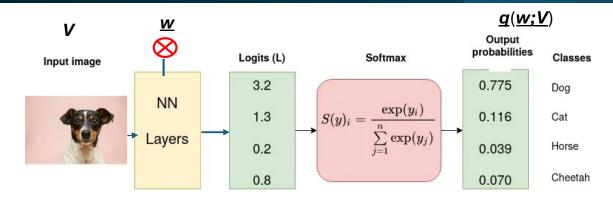
Variations of this theorem go back to McCulloch & Pitts (1943)

Wikipedia has a good overview:

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Loss Functions for Probability Distributions

Example: image classification using NNs



1.0

0.0

0.0

0.0

4 image classes: dog, cat, horse, cheetah

Training data:

- Images labeled with **one-hot encoding** of class: for dog,
- Interpret as probability distribution p(V) for classes

NN:

- Parameters <u>w</u>
- Output q(w;V) is probability distribution for classes

Logits: raw scores that are usually converted to probabilities by softmax

Loss function: measure of how "far away" $\underline{p}(V)$ and $\underline{q(w;V)}$ are from each other

• Loss across entire training set = mean of loss per image

Some possibilities

Consider label $\underline{p}(v)$ and model output $\underline{q}(\underline{w};v)$ to be points in 4-D space and compute some measure of "distance" between them

$$\|\underline{p}(v) - \underline{q}(\underline{w}; v)\|_1 \quad \|\underline{p}(v) - \underline{q}(\underline{w}; v)\|_2$$

Drawback of these loss functions: slow convergence

- For classification, we do not care about values in prediction vector (\underline{q}) , only the predicted label (bin)
- L₂ norm was used for classification problems till the late 90's

Modern approach: divergences

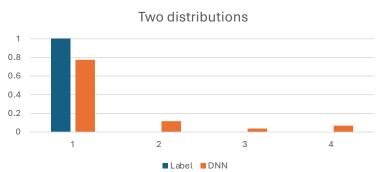
- D(p,q): distribution x distribution \rightarrow real
- · Class of functions that satisfy these properties

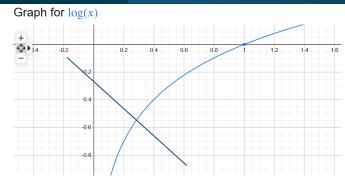
$$D(p,q) \ge 0$$

$$D(p,q) = 0 \iff p = q$$

- Need not be a metric since it may not even be symmetric
- Many divergence functions in literature: L_1 and L_2 norms, Bregman divergence, f-divergence,...

Kullback-Leibler (KL) divergence: $D_{KI}(P||Q)$





- Start with $\sum_{i=1}^{\infty} p(i) q(i)$
- Two key intuitions
 - If p(i) is small for some i, we do not care that much about (p(i)-q(i))
 - Any monotonically increasing function f can be used to massage values of p and qwithout changing the sign of the difference

 - KL-divergence uses log (usually log₂)
 Intuition: penalize mistakes: large p(i), small q(i)

$$\sum_{i=1}^{c} p(i)(\log(p(i)) - \log(q(i)))$$

Cross-entropy (I)

$$D_{KL}(P||Q) = \sum_{i=1}^{c} p(i)(\log(p(i)) - \log(q(i)))$$

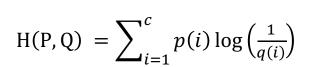
$$= -\sum_{i=1}^{c} p(i)\log(\frac{1}{p(i)}) + \sum_{i=1}^{c} p(i)\log(\frac{1}{q(i)})$$

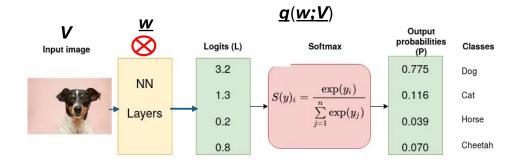
$$= -H(P) + H(P,Q)$$

H(P,Q) is called **cross-entropy** between P and Q (non-negative value)

H(P) is constant for given training set so we can use cross-entropy for loss In practice, try to reduce cross-entropy to less than 0.25

Cross-entropy (II)



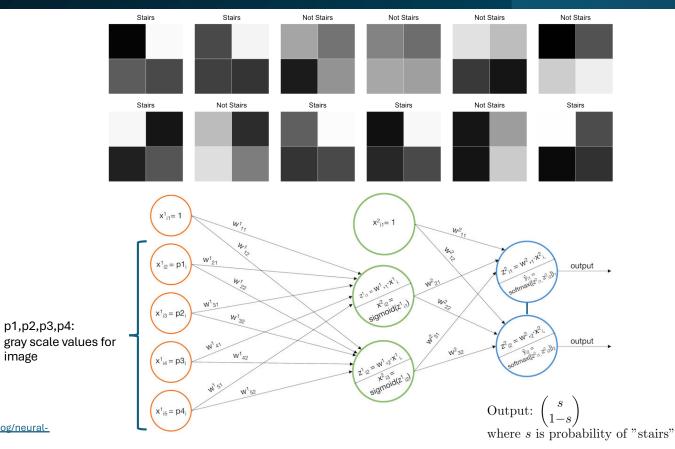


Gradient of cross-entropy loss assuming ground truth class is m (p(m) = 1, p(i) = 0 for all other classes)

$$H(P,Q) = -log(q(m))$$
 $\frac{\partial H(P,Q)}{\partial Wi} = -\frac{1}{q(m)} * \frac{\partial q(m)}{\partial Wi}$

Jensen-Shannon divergence: square root is metric $D_{JS}(P||Q) = \frac{1}{2} D_{KL}(P||M) + \frac{1}{2} D_{KL}(Q||M)$ where $M = \frac{1}{2} (P+Q)$

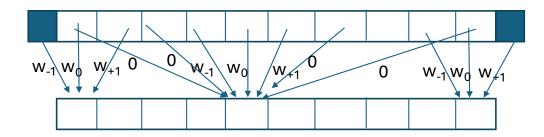
Image classification problem



https://www.gormanalysis.com/blog/neural-networks-a-worked-example

Convolutional Neural Networks (CNNs)

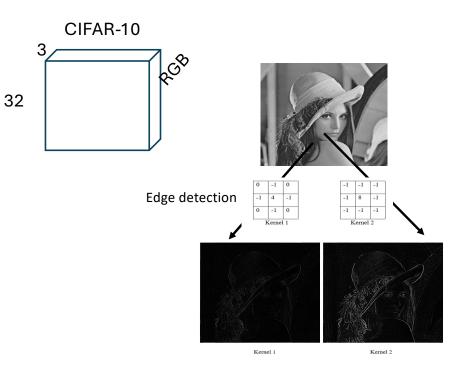
Convolution (1D example)



- Padding: input extended with zeros at boundaries, so output is same size
- Stride: gap between successive stencil applications
 - Output smaller than input (down-sampling)
- Weights are learned during training rather than being set heuristically
- Relation to fully-connected layers:
 - Sparse linear layer
 - Strong prior: weights of distant points is set to zero before training
 - Weight-sharing
 - Same weights used to compute all output elements

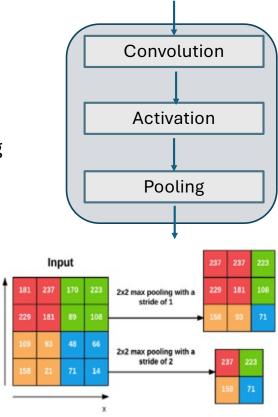
Convolutions on images

- Input data types are array/matrix/tensor
 - Image is an NxN array of pixels
 - Each pixel has grayscale value (0-255) or RGB values (channels)
 - Example: CIFAR-10 dataset has 60K, 32x32 RGB images, each labeled with one of 10 classes
- Convolution operation (aka filter)
 - Stencil operation to extract features
- Multiple filters: multiple output arrays



Convolutional neural networks (CNNs)

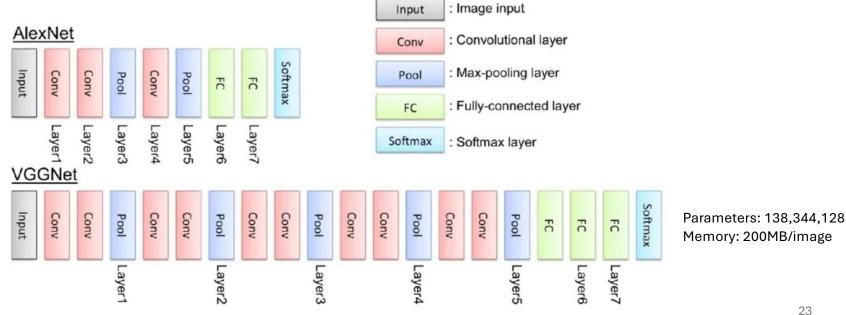
- Input data types are array/matrix/tensor
 - Image is an NxN array or tensor
- Structure of convolution layer
 - · Convolution: sparse linear layer w/ weight sharing
 - Activation functions (usually ReLU)
 - Pooling: reduction operation on portions of array
- CNN:
 - Multiple convolutional layers
 - Fully-connected layers
 - Softmax



Convolution layer

Example: VGGNet

- Input image: 224x224x3
- Conv: 3x3 convolutions/stride 1/padding 1, ReLU
- Pool: 2x2 max pooling/stride 2/no padding



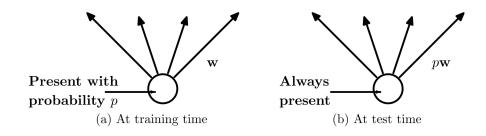
For more details Kaggle notebook

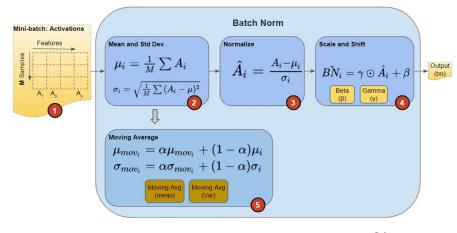
Variations (useful for other NNs as well)(I)

Drop-out: technique to avoid over-fitting

https://jmlr.org/papers/volume15/srivastava 14a/srivastava14a.pdf

Batch normalization: like data normalization but performed on the fly during training on outputs of hidden layers

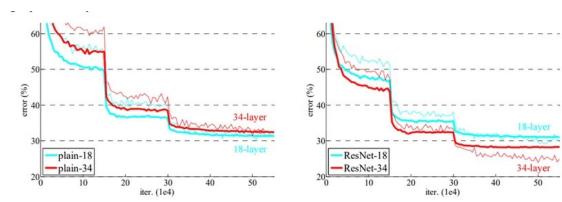


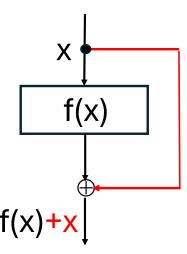


Variations (useful for other NNs as well)(II)

Residual (skip) connections

- Ameliorate problem of vanishing gradients
- First popularized in <u>ResNet</u> but used much earlier by McCulloch and Pitts, and Rosenblatt
- Permitted stacking of many more layers in CNNs





Online resources

<u>CIFAR-10 demo</u>running in your browser

- From Andrej Karpathy
- Shows improvements in accuracy for CIFAR-10 dataset during training

Fei-Fei Li's CNN course notes

- Stanford course cs231
- Leading expert on CNNs and image classification

Summary

Nonlinear functions used in NNs

- Sigmoid: $\Re \rightarrow \Re$
 - > Logistic function, ReLU, Leaky ReLU,....
- Softmax: $\Re^n \rightarrow \Re^n$
 - > Output can be interpreted as a probability distribution

Examples of NNs

- Implementing Boolean functions
- Stair image classifier

Loss functions for distributions

- KL-divergence, cross-entropy

Convolutional neural networks (CNNs)

Inputs are matrices/tensors

