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Organization

e Nonlinear functions used in Neural Networks (NNs) Function R(P.Q) {
— Sigmoidal: R—>N A=WO*pP
B =/0(AQ)
— Softmax: R"—R" C=WI1*B
D=W2*B
e Examples of Multilayer Perceptrons (MLP) E =f1(C)
. . F=72(D)
— Implementing Boolean functions R = f3(E,F)
return R}
e Loss functions for probability distributions
— KL-divergence, cross-entropy Training data: {(pi,qi,ti)}

e Convolutional neural networks (CNN)

— Array/tensor — class label

— Image classification

Loss = mean square error
Find gradient of Loss
Perform gradient-
descent to find optimal
WOo,W1,W2



Neural networks get their power from nonlinearity

e Nonlinear base functions are critical to the power of neural networks o

— Composition of linear functions is linear!

e Example: classification* O\H
(]
[ J

e Linear classifiers work for simple data sets such as top right one

— Data: points in plane with one of three labels (red, green, blue)

— Given a new point, predictits label

— Linear classifier divides plane into three regions and uses that to predict label
. PO
05 e, QQ%Q:D owiel ®
e Linear classifiers not adequate for more complex data sets such as LT o :
. '.o. 8‘32 2 La.'

bottom right one o ot v the %
— Nonlinearity is essential *i, . K3

S et &
— NNs can handle this problem s, o

- . ....;'.

* From Fei Fei Li’s CS231n course notes Linit;oar clagsifiers“fail' ,\;st womrk
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Sigmoidal functions, RelLU,...
Nonlinear funCtiOnS * |Intuition: binary classification

* Smooth versions of step function

used in
neural networks

Softmax

* |ntuition: multiway classification
* Smooth version of argmax




Sigmoidal functions: SR—R

Tout
o StSighuoickion —» 1
in out 05
e Step function _Ie -4 _.2 % ; 21 és
— Ifinputis +ve, outputis 1 else outputis O > L.
P P P 0 n Logistic
— Does not have derivative at 0 .
Ste function
P ' B 1
e Sigmoidal functions (S-shaped): function fz) = 1re@
— Smooth approximations to step functions df
— = f@)(1 - f(x))

— Examples: logistic function, tanh

e Disadvantages of logistic function:

— Vanishing gradients for large magnitude inputs, so weights upstream from activation function are updated slowly

— Computationally more expensive than alternatives like ReLU 5



Other

activation
functions

Hame

Binary step

Logistic (a.

Soft step)

TarH

ArcTan

Rectified
Linear Unit
(ReLU)

Parameteric
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Linear Unit
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Linear Unit
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SoftPlus
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Softmax:; Rk— Rk

"I One-hot |7 Y1

o | POEMAX | o )

Xk— Encoder }— Y1

e One-hotarg max encoder

yiis 1ifx;is largest input, and zero otherwise
If m inputs are maximal, corresponding outputs are 1/m
Note: output values are non-negative and sumto 1

Outputs can be interpreted as probability distribution

e Smooth approximation to one-hot arg max encoder: softmax

Intuition: points on line x2 = x1+k are mapped to ( 1 ek )

eF+1" ek +1

Outputs can be interpreted as probability distribution

e 2-inputencoder with one input setto 0 is logistic function

>
>

10y,

2-input one-hot arg max encoder

el

y. J—

7 2521 exj
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ox; v yi)
Oy — iy
axm 1 m

Softmax function:k inputs




MLP Examples




Example: encoding Boolean functions (l)

Step

— e

in function| out

e Implementation: ¥ = ©(Wzx + b)
— Inputs and outputs: 0 for false, 1 for true
— Network

— Constants b referred to as bias
e NOT: y=O(—1xz+0.5)
e AND: Q = @($1+$2—15)

e OR: ¥ =0O(x1+12—0.5)

A 5 . . .
out / Logistic function
1 e

0 In --~_ Bias: permits

Y affine functions
/)

Step )
function @ -0.5
1
1 1 <x2> —05 oR
I

(",
|nput : Output
layer ! layer

Single-layer perceptron



Example: encoding Boolean functions (ll)

® Implements
r1 D xo = (.%1/\33_2) V (l'_l/\l‘g)

e XOR requires a hidden layer

— Minsky & Papert

out
1

0 in
Step
function ®

Input
layer

Hidden
layer

Output
layer

10


https://en.wikipedia.org/wiki/Perceptrons_(book)
https://en.wikipedia.org/wiki/Perceptrons_(book)
https://en.wikipedia.org/wiki/Perceptrons_(book)

Power of multi-layer neural networks

Universal approximation theorem:

* network with a linear output layer, and
* atleast one hidden layer with any “squashing” activation function (such
as the logistic function)

can approximate any Borel measurable function from one finite-
dimensional space to another with any desired non-zero amount of error,
provided that the network is given enough hidden units.

Many similar results with different assumptions

Variations of this theorem go back to McCulloch & Pitts (1943)

Wikipedia has a good overview:
https://en.wikipedia.org/wiki/Universal approximation theorem
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https://link.springer.com/article/10.1007/BF02478259
https://en.wikipedia.org/wiki/Universal_approximation_theorem

Loss Functions for

Probability Distributions




Example: image classification using NNs

v w q(w;V)
® Outgqt_
Input image I Logits (L) Softmax probabilicies Classes
3.2 & Y 0.775 Dog
NN :
? 13 iy e G 0116 | Cat
* Layers exp(y;
, y 0.2 ,; p(y;) 0.039 Horse
0.8 N 4 0.070 Cheetah
4 image classes: dog, cat, horse, cheetah
Training data: 1.0
* Images labeled with one-hot encoding of class: for dog, 0.0
* Interpret as probability distribution p(V) for classes 88

NN:

* Parameters w
* Output g(w;V) is probability distribution for classes

Logits: raw scores that are usually converted to probabilities by softmax

Loss function: measure of how “far away” p(V) and q(w;V) are from each other
* Loss across entire training set = mean of loss perimage
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Some possibilities

Consider label p(v) and model output g(w;v) to be points in 4-D space and compute some
measure of “distance” between them

Ip(v)—q(w;v) |y [lp(v)=q(w;v)]|2

Drawback of these loss functions: slow convergence
* For classification, we do not care about values in prediction vector (q), only the predicted label (bin)
* L, normwas used for classification problems till the late 90’s

Modern approach: divergences
* D(p,q): distribution x distribution = real
* Class of functions that satisfy these properties

D(p,q) >0
D(p,q) =0 < p=gq

* Need not be a metric since it may not even be symmetric
* Many divergence functions in literature: L, and L, norms, Bregman divergence, f-divergence,...
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Kullback-Leibler (KL) divergence: D, (P||Q)

Graph for log(x)
Two distributions -

1 3
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0 [ | — -
1 2

M| abel mDNN

e Start with Z p(i) —q(i)

* Two key intuitions
* If p(i) is small for some i, we do not care that much about (p(i)-q(i)) Zp(l)(P(l) —q(1)

* Any monotonically increasing function f can be used to massage values of p and g
without changing the sign of the difference

» KL-divergence uses log (usually logs) _ _ _
* Intuition: penalize mistakes: large p(i), small (i) Z p()(log(p (1)) — log(q(1))) 15
i=1



Cross-entropy (l)

D (PI1 Q) = Zf=1p<i><log(p<z:>> — log(q(1)))

= zpmlog( )+ melog( )

l:

L=

= -H(P) + HPQ)

(P,Q) is called cross-entropy between P and Q (non-negative value)

H(P) is constant for given training set so we can use cross-entropy for loss
In practice, try to reduce cross-entropy to less than 0.25
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Cross-entropy (ll)

a(w;V)

V w Output
Input image ® Logits (L) Softmax P rob?g)ililies Classes
3.2 , N 0.775 Dog
c _ 1 e 13 Gl f"P& 0.116 Cat
H(P,Q) = z p(i) log (q(_L)) @ || Lavers T JES & =rl) 0039 | Horse
=1 ‘ 0.8 A= 0.070 Cheetah

Gradient of cross-entropy loss assuming ground truth classis m
(p(m) =1, p(i) = 0 for all other classes)

JH(P, 1 0
H(PQ) =-logla(m)) ~ Zjr=- -+ 21

Jensen-Shannon divergence: square root is metric
Dis(PI1Q) = 2 Dy (P[IM) + 72 Dy, (Q[IM)  where M =72 (P+Q)
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Image classification problem

Stairs Stairs Not Stairs Not Stairs Not Stairs Not Stairs

Stairs Not Stairs Stairs Stairs Not Stairs Stairs

p1,p2,p3,p4:
gray scale values for
image

output

output

Output: 1i

where s is probability of ”stairs”
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https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example

Convolutional Neural

Networks (CNNs)




Convolution (1D example)

N/ \
W4 W% wiy 00 \:VO /V}/{ 0 Wawg w4,

v

* Padding: input extended with zeros at boundaries, so output is same size

» Stride: gap between successive stencil applications
* Qutput smaller than input (down-sampling)

* Weights are learned during training rather than being set heuristically

* Relation to fully-connected layers:
* Sparse linear layer
e Strong prior: weights of distant points is set to zero before training
* Weight-sharing
« Same weights used to compute all output elements
20



Convolutions on images

CIFAR-10

* |nput data types are array/matrix/tensor
* Image is an NxN array of pixels 32

* Each pixel has grayscale value (0-
255) or RGB values (channels)

 Example: CIFAR-10 dataset has e dotoct o S
60K, 32x32 RGB images, each se detecton e \
labeled with one of 10 classes s/

* Convolution operation (aka filter)
» Stencil operation to extract features

* Multiple filters: multiple output arrays

21

https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73



https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73

Convolutional neural networks (CNNs)

Convolution layer

* Input data types are array/matrix/tensor / Convolution \

* Image is an NxN array or tensor
* Structure of convolution layer Activation

e Convolution: sparse linear layer w/ weight sharing l

* Activation functions (usually ReLU) Poolin

: . . : g

* Pooling: reduction operation on portions of array \ | /

* CNN:

Input

* Multiple convolutional layers
* Fully-connected layers
e Softmax

70 223 2x2 max pooling with a
stride of 1

2x2 max pooling with a
stride of 2

22




Example: VGGNet

* Inputimage: 224x224x3
* Conv: 3x3 convolutions/stride 1/padding 1, RelLU

* Pool: 2x2 max pooling/stride 2/no padding
Input w : Image input

M Conv : Convolutional layer
S M ling |
5 O 0O 0O . Dt
3 A g o 8 > - = Pool : Max-pooling layer
= < < & < =2 §
% FC : Fully-connected layer
8 H »H H H H b
< ~ < ~ ~ ~ ~ :
5 5 - 5 5 s 5 Softmax : Softmax layer
2N ®» B o o <N
VGGNet
w
. o .
S (S (5 (IS 1S (IS (IS IS (I8 |5 [k (IS | IS (I8 (B |18 | = |[=||m || Parameters: 138,344,128
c 3 =] o 3 - o 3 3 o - = o) 3 = o (@] (] (@] 3 .
- < < = | B = = | B < = | S < = | B < E & Memory: 200MB/image
| = e = E= | s | e
Q 1Y) 0 1Y) 1Y) o) o)
b ~ - s ~l e ~
] ] ] o o e <
For more details - ot bt o a & N 3

Kaggle notebook



http://ethereon.github.io/netscope/
http://ethereon.github.io/netscope/
https://www.kaggle.com/code/blurredmachine/vggnet-16-architecture-a-complete-guide/notebook

Variations (useful for other NNs as well)(l)

Drop-out: technique to avoid over-fitting w pw
, : Present with Al

https:/ﬂmlr.org/papers/volume1 S/srivastava pzzr;ﬂiv:; > przvszst

14a/srivastaval4a.pdf (a) At training time (b) At test time

o o Batch Norm
Mini-batch: Activations

Features Mean and Std Dev Scale and Shift
—_—

g 1
a 11'1 = — ZAZ e a Output
£ M BN; =y© A; + B[ o
=
gi=4/L 3 (A — p)? Beta | [Gamma
vz

Batch normalization: like data
normalization but performed on the fly

ﬁovlng Average

during training on outputs of hidden layers Fomov, = Cthtmou; + (1 — @)
Omov; = QT mon; + (1 — @)0;

Informalintroduction to batch normalization 2



https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://towardsdatascience.com/batch-norm-explained-visually-why-does-it-work-90b98bcc58a0
https://towardsdatascience.com/batch-norm-explained-visually-why-does-it-work-90b98bcc58a0

Variations (useful for other NNs as well)(ll)

Residual (skip) connections

* Ameliorate problem of vanishing gradients
* First popularized in ResNet but used much earlier X

by McCulloch and Pitts, and Rosenblatt f(X)
* Permitted stacking of many more layers in CNNs

ResNet-18 v AAAAAAA,
‘ ==ResNet-34 34-layer

20 A : ; . 2 : i

| 10 20 30 40 50 l’() 10 20 30 40 50

iter. (led) iter. (led)

From ResNet paper 25


https://arxiv.org/pdf/1512.03385
https://towardsdatascience.com/batch-norm-explained-visually-why-does-it-work-90b98bcc58a0

Online resources

CIFAR-10 demo running in your browser
* From Andrej Karpathy

* Shows improvements in accuracy for CIFAR-10 dataset during
training

Fei-Fei Li’s CNN course notes
* Stanford course ¢s231
* Leading expert on CNNs and image classification
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/

Summary

Nonlinear functions used in NNs
— Sigmoid: R—>R
> Logistic function, RelLU, Leaky RelLU,....

— Softmax: R"—R"

> Output can be interpreted as a probability distribution

Examples of NNs
— Implementing Boolean functions

— Stairimage classifier

Loss functions for distributions

— KL-divergence, cross-entropy

Convolutional neural networks (CNNs)

— Inputs are matrices/tensors
27
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