
CS395T: Foundations of
Machine Learning for
Systems Researchers
Fall 2025

Lecture 3: Neural Networks

Organization

● Nonlinear functions used in Neural Networks (NNs)
– Sigmoidal: Â®Â

– Softmax: Ân®Ân

● Examples of Multilayer Perceptrons (MLP)
– Implementing Boolean functions

● Loss functions for probability distributions

– KL-divergence, cross-entropy

● Convolutional neural networks (CNN)
– Array/tensor ® class label

– Image classification

Function R(P,Q) {
A = W0*P
B = f0(A,Q)
C = W1*B
D = W2*B
E = f1(C)
F = f2(D)
R = f3(E,F)
return R}

Training data: {(pi,qi,ti)}
• Loss = mean square error
• Find gradient of Loss
• Perform gradient-

descent to find optimal
W0,W1,W2

2

Neural networks get their power from nonlinearity

● Nonlinear base functions are critical to the power of neural networks
– Composition of linear functions is linear!

● Example: classification*

● Linear classifiers work for simple data sets such as top right one
– Data: points in plane with one of three labels (red, green, blue)

– Given a new point, predict its label

– Linear classifier divides plane into three regions and uses that to predict label

● Linear classifiers not adequate for more complex data sets such as
bottom right one
– Nonlinearity is essential

– NNs can handle this problem

* From Fei Fei Li’s CS231n course notes

3

Linear classifiers (SVM) work

Linear classifiers fail; NNs work

Nonlinear functions
used in

neural networks

Sigmoidal functions, ReLU,…
• Intuition: binary classification

• Smooth versions of step function

Softmax
• Intuition: multiway classification

• Smooth version of argmax

4

Sigmoidal functions: Â®Â

● Step function

– If input is +ve, output is 1 else output is 0

– Does not have derivative at 0

● Sigmoidal functions (S-shaped):

– Smooth approximations to step functions

– Examples: logistic function, tanh

● Disadvantages of logistic function:
– Vanishing gradients for large magnitude inputs, so weights upstream from activation function are updated slowly

– Computationally more expensive than alternatives like ReLU 5

in

out

0

Step function

Step
function

Logistic
function

1
in out

Sigmoidal

Other
activation
functions

6

Softmax: Âk®Âk

● One-hot arg max encoder
– yi is 1 if xi is largest input, and zero otherwise

– If m inputs are maximal, corresponding outputs are 1/m

– Note: output values are non-negative and sum to 1

– Outputs can be interpreted as probability distribution

● Smooth approximation to one-hot arg max encoder: softmax
– Intuition: points on line x2 = x1+k are mapped to

– Outputs can be interpreted as probability distribution

● 2-input encoder with one input set to 0 is logistic function 7

x1

xk

y1

yk

One-hot
Arg Max
Encoder x1

x2

x 2 =
 x 1

y1

x (0.5,0.5)
y2

(1,0)

(0,1)

2-input one-hot arg max encoder

Softmax

MLP Examples

8

Example: encoding Boolean functions (I)

9

● Implementation:

– Inputs and outputs: 0 for false, 1 for true

– Network

– Constants b referred to as bias

● NOT:

● AND:

● OR:

in

out

0

Step
function

Step
function

Logistic function
1

in out

x1

x2

S Q
1

1

1.0
-0.5

OR

Input
layer

Output
layer

Single-layer perceptron

Bias: permits
affine functions

Example: encoding Boolean functions (II)

10

● XOR:

● Implements

● XOR requires a hidden layer
– Minsky & Papert

in

out

0

Step
function

1

x1

x2

S

S Q

1

1

-1
-1

1

1

1.0

1.0

-0.5

-0.5

XOR

Input
layer

Hidden
layer

Output
layer

S Q

Two-layer perceptron

https://en.wikipedia.org/wiki/Perceptrons_(book)
https://en.wikipedia.org/wiki/Perceptrons_(book)
https://en.wikipedia.org/wiki/Perceptrons_(book)

Power of multi-layer neural networks

Universal approximation theorem:
• network with a linear output layer, and
• at least one hidden layer with any “squashing” activation function (such

as the logistic function)
can approximate any Borel measurable function from one finite-
dimensional space to another with any desired non-zero amount of error,
provided that the network is given enough hidden units.

Many similar results with different assumptions

Variations of this theorem go back to McCulloch & Pitts (1943)
Wikipedia has a good overview:
https://en.wikipedia.org/wiki/Universal_approximation_theorem

11

https://link.springer.com/article/10.1007/BF02478259
https://en.wikipedia.org/wiki/Universal_approximation_theorem

Loss Functions for
Probability Distributions

12

Example: image classification using NNs

4 image classes: dog, cat, horse, cheetah

Training data:
• Images labeled with one-hot encoding of class: for dog,
• Interpret as probability distribution p(V) for classes

NN:
• Parameters w
• Output q(w;V) is probability distribution for classes

Logits: raw scores that are usually converted to probabilities by softmax
Loss function: measure of how “far away” p(V) and q(w;V) are from each other
• Loss across entire training set = mean of loss per image

13

q(w;V)
V w

Some possibilities

Consider label p(v) and model output q(w;v) to be points in 4-D space and compute some
measure of “distance” between them

Drawback of these loss functions: slow convergence
• For classification, we do not care about values in prediction vector (q), only the predicted label (bin)
• L2 norm was used for classification problems till the late 90’s

Modern approach: divergences
• D(p,q): distribution x distribution à real
• Class of functions that satisfy these properties

• Need not be a metric since it may not even be symmetric
• Many divergence functions in literature: L1 and L2 norms, Bregman divergence, f-divergence,…

14

Kullback-Leibler (KL) divergence: DKL(P||Q)

• Start with

• Two key intuitions
• If p(i) is small for some i, we do not care that much about (p(i)-q(i))

• Any monotonically increasing function f can be used to massage values of p and q
without changing the sign of the difference
• KL-divergence uses log (usually log2)
• Intuition: penalize mistakes: large p(i), small q(i) 15

0

0.2

0.4

0.6

0.8

1

1 2 3 4

Two distributions

Label DNN

!
!"#

$

𝑝 𝑖 − 𝑞 𝑖

!
!"#

$

𝑝 𝑖 (𝑝 𝑖 − 𝑞 𝑖)

!
!"#

$

𝑝 𝑖 (log(𝑝 𝑖) − log(𝑞 𝑖))

Cross-entropy (I)

H(P,Q) is called cross-entropy between P and Q (non-negative value)

H(P) is constant for given training set so we can use cross-entropy for loss
In practice, try to reduce cross-entropy to less than 0.25

16

DKL(P|| Q) = !!"#
$ 𝑝 𝑖 (log(𝑝 𝑖) − log(𝑞 𝑖))

= −#

!"#

$

𝑝 𝑖 log
1
𝑝 𝑖 +#

!"#

$

𝑝 𝑖 log
1
𝑞 𝑖

= - H(P) + H(P,Q)

Cross-entropy (II)

Gradient of cross-entropy loss assuming ground truth class is m
 (p(m) = 1, p(i) = 0 for all other classes)

H(P,Q) = -log(q(m)) !"($,&)
!()

 = - *
+	(-)

* !+(-)
!()

Jensen-Shannon divergence: square root is metric
DJS(P||Q) = ½ DKL(P||M) + ½ DKL(Q||M) where M = ½ (P+Q)

17

H P, Q 	= '
!"#

$
𝑝 𝑖 log #

% ! 	

q(w;V)
V w

Image classification problem

https://www.gormanalysis.com/blog/neural-
networks-a-worked-example

18

p1,p2,p3,p4:
gray scale values for
image

https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example
https://www.gormanalysis.com/blog/neural-networks-a-worked-example

Convolutional Neural
Networks (CNNs)

19

Convolution (1D example)

• Padding: input extended with zeros at boundaries, so output is same size

• Stride: gap between successive stencil applications
• Output smaller than input (down-sampling)

• Weights are learned during training rather than being set heuristically

• Relation to fully-connected layers:
• Sparse linear layer

• Strong prior: weights of distant points is set to zero before training
• Weight-sharing

• Same weights used to compute all output elements
20

w-1 w0 w+1 000 0w-1 w0 w+1 w+1w-1 w0

Convolutions on images

• Input data types are array/matrix/tensor
• Image is an NxN array of pixels
• Each pixel has grayscale value (0-

255) or RGB values (channels)
• Example: CIFAR-10 dataset has

60K, 32x32 RGB images, each
labeled with one of 10 classes

• Convolution operation (aka filter)
• Stencil operation to extract features

• Multiple filters: multiple output arrays

21

32
32

3
CIFAR-10

RGB

Edge detection

https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73

https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73
https://medium.com/@shashikadilhani97/digital-image-processing-filters-832ec6d18a73

Convolutional neural networks (CNNs)

• Input data types are array/matrix/tensor
• Image is an NxN array or tensor

• Structure of convolution layer
• Convolution: sparse linear layer w/ weight sharing
• Activation functions (usually ReLU)
• Pooling: reduction operation on portions of array

• CNN:
• Multiple convolutional layers
• Fully-connected layers
• Softmax

22

Convolution

Activation

Pooling

Convolution layer

Example: VGGNet

• Input image: 224x224x3
• Conv: 3x3 convolutions/stride 1/padding 1, ReLU
• Pool: 2x2 max pooling/stride 2/no padding

23For more details
Kaggle notebook

Parameters: 138,344,128
Memory: 200MB/image

http://ethereon.github.io/netscope/
http://ethereon.github.io/netscope/
https://www.kaggle.com/code/blurredmachine/vggnet-16-architecture-a-complete-guide/notebook

Variations (useful for other NNs as well)(I)

Drop-out: technique to avoid over-fitting

https://jmlr.org/papers/volume15/srivastava
14a/srivastava14a.pdf

Batch normalization: like data
normalization but performed on the fly
during training on outputs of hidden layers

24

Informal introduction to batch normalization

Informal introduction to batch normalization

https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://towardsdatascience.com/batch-norm-explained-visually-why-does-it-work-90b98bcc58a0
https://towardsdatascience.com/batch-norm-explained-visually-why-does-it-work-90b98bcc58a0

Variations (useful for other NNs as well)(II)

Residual (skip) connections
• Ameliorate problem of vanishing gradients
• First popularized in ResNet but used much earlier

by McCulloch and Pitts, and Rosenblatt
• Permitted stacking of many more layers in CNNs

25

Informal introduction to batch normalization

Å

x

f(x)

f(x)+x

From ResNet paper

https://arxiv.org/pdf/1512.03385
https://towardsdatascience.com/batch-norm-explained-visually-why-does-it-work-90b98bcc58a0

Online resources

CIFAR-10 demo running in your browser
• From Andrej Karpathy
• Shows improvements in accuracy for CIFAR-10 dataset during

training

Fei-Fei Li’s CNN course notes
• Stanford course cs231
• Leading expert on CNNs and image classification

26

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/

Summary

Nonlinear functions used in NNs
– Sigmoid: Â®Â

> Logistic function, ReLU, Leaky ReLU,….

– Softmax: Ân®Ân

> Output can be interpreted as a probability distribution

Examples of NNs
– Implementing Boolean functions

– Stair image classifier

Loss functions for distributions
– KL-divergence, cross-entropy

Convolutional neural networks (CNNs)
– Inputs are matrices/tensors

27

28

